Ir al contenido principal

Trigonometría - Ley de senos y cosenos

 Un triángulo oblicuángulo es aquel que no tiene ningún ángulo recto, es decir, todos sus ángulos miden menos de 90º, por lo que no se puede resolver directamente por el teorema de Pitágoras, el triángulo oblicuángulo se resuelve con leyes de senos y de cosenos.

Utilizamos tres propiedades para resolver este tipo de triángulos:

1. Suma de los ángulos de un triángulo A + B + C = 180º

2. Ley de senos: cada lado de un triángulo es directamente proporcional al seno del ángulo opuesto.

 

 

3. Ley de cosenos: en todo triángulo se cumple que conociendo 2 lados y el ángulo comprendido entre ellos, se puede conocer el tercer lado.

Esto supone 3 posibilidades:

 

triangulo con lados y angulos

 
Ejercicio:

Una persona contempla una estatua; desde su punto de observación a los pies hay una longitud de 7 m, y a la parte superior de la cabeza son 8 m, el ángulo que se forma entre ambos puntos de observación es de 60o

¿Qué aplicamos? ¿Ley de senos o cosenos?

Contamos con los siguientes datos:

Lado a = 8 m
Lado b = 7 m
H = 60o

Cuando tenemos 2 lados y el ángulo comprendido entre ambos lados, aplicamos la ley de cosenos.

H2 = a2 + b2 - 2abcosH

H2 = 82 + 72 - 2(8)(7)cosH

H2 = 64 +49 - 2(8)(7)cos60o

cos60o = 1/2

H2 = 64 +49 - 2(8)(7)(½)

H2 = 113 - 56

H2 = 57

H = 57

H = 7.55

 




Comentarios

Entradas populares de este blog

Resolver problemas a través de un sistema de ecuaciones

Cada vez que un  jugador  gana una partida de dominó recibe 7 dólares y cada vez que pierde paga 3 dólares. Armamos nuestro sistema de ecuaciones: 7x - 3y = 55 Ahora resolvemos nuestro sistema despejamos c en la primera ecuación: Entonces se ganaron  10 partidas. 7(15 - y) - 3y = 55 105 -7y - 3y = 55 -10y = 55 - 105 y = -50/-10 y = 5 x = 10 ◦    Un número cualquiera --> x  (en realidad puede ser cualquier letra, el chiste está en que representa que desconocemos cuánto vale ese número) ◦    Otro número cualquiera --> y  (el problema habla de dos números que no se conocen, pero diferentes entre ellos, por eso a uno lo nombre "x" y al otro "y") ◦    Un número excede en  12   unidades  a otro  -->  x = y+ 12 , con esto estoy diciendo que si le sumo  12  a "y" será igual a "x" porque el problema dice que uno excede al otro en  12 unidades ◦...

Problemas del máximo común divisor

El máximo común divisor consiste en encontrar el divisor más grande de varios números. Por ejemplo para repartir cajas de naranjas, sin que sobren. Problema 1: Un comerciante desea poner en cajas 12,028 manzanas y 12,772  naranjas , de modo que cada caja contenga el mismo número de manzanas o  naranjas  y, además, el mayor número posible de ambas.  Hallar el número de  naranjas  de cada caja y el número de cajas necesarias para empaquetar toda la fruta. Problema 2: Un carpintero quiere cortar una plancha de madera de 256 cm de largo y 96 cm de ancho, en  cuadrados  lo más grandes posible. ¿Cuál debe ser la longitud del lado de cada cuadrado? y ¿cuántos  cuadrados  se obtienen de la plancha de madera? 

Resolución de problemas a través de un sistema de ecuaciones

Un número excede en 12 unidades a otro, si restáramos 4 unidades a cada uno de ellos entonces el primero seria igual al doble del segundo. ◦    Un número cualquiera --> x  (en realidad puede ser cualquier letra, el chiste está en que representa que desconocemos cuánto vale ese número) ◦    Otro número cualquiera --> y  (el problema habla de dos números que no se conocen, pero diferentes entre ellos, por eso a uno lo nombre "x" y al otro "y") ◦    Un número excede en 12 unidades a otro  -->  x = y+12 , con esto estoy diciendo que si le sumo 12 a "y" será igual a "x" porque el problema dice que uno excede al otro en 12 unidades ◦    Si restáramos 4 unidades a cada uno de ellos, entonces el primero sería igual al doble del segundo  -->  x - 4 = 2 (y - 4) Arriba tenemos ya nuestras dos ecuaciones y podemos resolver: ◦   x = y + 12 ◦   x - 4 = 2 (y - 4) Sustituyo el valor...