Ir al contenido principal

TEOREMA DE PITÁGORAS

 En  una competencia los alumnos deben encontrar un tesoro; para ello  les dan tres coordenadas: el laboratorio (L), la biblioteca (B) y la cafetería (C). Las dos primeras coordenadas se encuentran a 40 m de distancia entre ellas en línea recta que corresponde a la biblioteca y el laboratorio. La cafetería se ubica a 30 m en línea recta del laboratorio. El tesoro se encuentra a la mitad del recorrido entre la biblioteca y la cafetería.




Para no desviarse del camino deberán colocar una cuerda entre la cafetería y la biblioteca, pero deben solicitarla en el salón de herramientas con el número exacto de metros. 


¿De qué tamaño será la cuerda y cuántos metros deben recorrer para encontrar el el punto medio donde se encuentra el tesoro?


Si se unen los puntos dados se observa un triángulo rectángulo:





El lado que se forma de la cafetería a la biblioteca es el más grande, por lo tanto, es la hipotenusa.


Para encontrar el valor de la hipotenusa se emplea el Teorema de Pitágoras.


c2 = a2 + b2


Se sustituyen los datos que se tienen de los dos catetos en la fórmula


c2 = 402 + 302


Se resuelve


c2 = 1,600 + 900

c2 = 2,500

c = √2,500

c = 50 m


La cuerda deberá medir 50 m y para encontrar el punto medio donde está el tesoro se divide entre 2.


50/2 = 25 m


¡Listo, el tesoro lo encontramos recorriendo 25 metros!


Ver el ejercicio en video



Comentarios

Entradas populares de este blog

Resolver problemas a través de un sistema de ecuaciones

Cada vez que un  jugador  gana una partida de dominó recibe 7 dólares y cada vez que pierde paga 3 dólares. Armamos nuestro sistema de ecuaciones: 7x - 3y = 55 Ahora resolvemos nuestro sistema despejamos c en la primera ecuación: Entonces se ganaron  10 partidas. 7(15 - y) - 3y = 55 105 -7y - 3y = 55 -10y = 55 - 105 y = -50/-10 y = 5 x = 10 ◦    Un número cualquiera --> x  (en realidad puede ser cualquier letra, el chiste está en que representa que desconocemos cuánto vale ese número) ◦    Otro número cualquiera --> y  (el problema habla de dos números que no se conocen, pero diferentes entre ellos, por eso a uno lo nombre "x" y al otro "y") ◦    Un número excede en  12   unidades  a otro  -->  x = y+ 12 , con esto estoy diciendo que si le sumo  12  a "y" será igual a "x" porque el problema dice que uno excede al otro en  12 unidades ◦...

Problemas del máximo común divisor

El máximo común divisor consiste en encontrar el divisor más grande de varios números. Por ejemplo para repartir cajas de naranjas, sin que sobren. Problema 1: Un comerciante desea poner en cajas 12,028 manzanas y 12,772  naranjas , de modo que cada caja contenga el mismo número de manzanas o  naranjas  y, además, el mayor número posible de ambas.  Hallar el número de  naranjas  de cada caja y el número de cajas necesarias para empaquetar toda la fruta. Problema 2: Un carpintero quiere cortar una plancha de madera de 256 cm de largo y 96 cm de ancho, en  cuadrados  lo más grandes posible. ¿Cuál debe ser la longitud del lado de cada cuadrado? y ¿cuántos  cuadrados  se obtienen de la plancha de madera? 

Resolución de problemas a través de un sistema de ecuaciones

Un número excede en 12 unidades a otro, si restáramos 4 unidades a cada uno de ellos entonces el primero seria igual al doble del segundo. ◦    Un número cualquiera --> x  (en realidad puede ser cualquier letra, el chiste está en que representa que desconocemos cuánto vale ese número) ◦    Otro número cualquiera --> y  (el problema habla de dos números que no se conocen, pero diferentes entre ellos, por eso a uno lo nombre "x" y al otro "y") ◦    Un número excede en 12 unidades a otro  -->  x = y+12 , con esto estoy diciendo que si le sumo 12 a "y" será igual a "x" porque el problema dice que uno excede al otro en 12 unidades ◦    Si restáramos 4 unidades a cada uno de ellos, entonces el primero sería igual al doble del segundo  -->  x - 4 = 2 (y - 4) Arriba tenemos ya nuestras dos ecuaciones y podemos resolver: ◦   x = y + 12 ◦   x - 4 = 2 (y - 4) Sustituyo el valor...